Search results for " 49K20"

showing 3 items of 3 documents

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Symmetry of minimizers with a level surface parallel to the boundary

2015

We consider the functional $$I_\Omega(v) = \int_\Omega [f(|Dv|) - v] dx,$$ where $\Omega$ is a bounded domain and $f$ is a convex function. Under general assumptions on $f$, G. Crasta [Cr1] has shown that if $I_\Omega$ admits a minimizer in $W_0^{1,1}(\Omega)$ depending only on the distance from the boundary of $\Omega$, then $\Omega$ must be a ball. With some restrictions on $f$, we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these results extend to more general settings, in particular to functionals that are not differenti…

Surface (mathematics)Pure mathematicsGeneral MathematicsApplied MathematicsBoundary (topology)35B06 35J70 35K55 49K20Domain (mathematical analysis)overdetermined problems; minimizers of integral functionals; parallel surfaces; symmetryMathematics - Analysis of PDEsMinimizers of integral functionalSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsOverdetermined problemMathematics (all)Ball (mathematics)Circular symmetryDifferentiable functionConvex functionAnalysis of PDEs (math.AP)Mathematics
researchProduct

CALIBRATION OF LÉVY PROCESSES USING OPTIMAL CONTROL OF KOLMOGOROV EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS

2018

We present an optimal control approach to the problem of model calibration for L\'evy processes based on a non parametric estimation procedure. The calibration problem is of considerable interest in mathematical finance and beyond. Calibration of L\'evy processes is particularly challenging as the jump distribution is given by an arbitrary L\'evy measure, which form a infinite dimensional space. In this work, we follow an approach which is related to the maximum likelihood theory of sieves. The sampling of the L\'evy process is modelled as independent observations of the stochastic process at some terminal time $T$. We use a generic spline discretization of the L\'evy jump measure and selec…

non-parametric maximum likelihood methodOptimization problemDiscretizationL ́evy processesoptimal control of PIDE010103 numerical & computational mathematics01 natural sciences93E10 (primary) 49K20 60G51 62G05 (secondary)010104 statistics & probabilitysymbols.namesakeConjugate gradient methodIMEX numerical methodQA1-939Applied mathematics0101 mathematicsMathematics - Optimization and ControlMathematicsKolmogorov-Fokker-Planck equationoptimal control of PIDE Kolmogorov-Fokker-Planck equation L ́evy processes non-parametric maximum likelihood method IMEX numerical method.SolverOptimal controlSpline (mathematics)Lévy processesModeling and SimulationLagrange multipliersymbolsAkaike information criterionMathematicsAnalysisMathematical Modelling and Analysis
researchProduct